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Mapping the functional network of human 
cancer through machine learning and 
pan-cancer proteogenomics

Zhiao Shi1,2,3, Jonathan T. Lei1,2,3, John M. Elizarraras1,2 & Bing Zhang    1,2 

Large-scale omics profiling has uncovered a vast array of somatic mutations 
and cancer-associated proteins, posing substantial challenges for their 
functional interpretation. Here we present a network-based approach 
centered on FunMap, a pan-cancer functional network constructed using 
supervised machine learning on extensive proteomics and RNA sequencing 
data from 1,194 individuals spanning 11 cancer types. Comprising 10,525 
protein-coding genes, FunMap connects functionally associated genes 
with unprecedented precision, surpassing traditional protein–protein 
interaction maps. Network analysis identifies functional protein modules, 
reveals a hierarchical structure linked to cancer hallmarks and clinical 
phenotypes, provides deeper insights into established cancer drivers 
and predicts functions for understudied cancer-associated proteins. 
Additionally, applying graph-neural-network-based deep learning to 
FunMap uncovers drivers with low mutation frequency. This study 
establishes FunMap as a powerful and unbiased tool for interpreting 
somatic mutations and understudied proteins, with broad implications for 
advancing cancer biology and informing therapeutic strategies.

Advancements in next-generation sequencing and mass spectrometry 
(MS) have transformed cancer research. Large-scale initiatives such as 
The Cancer Genome Atlas (TCGA), the International Cancer Genome 
Consortium and the Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) have greatly deepened our understanding of cancer, revealing 
a vast array of somatic mutations and cancer-associated proteins. These 
advancements present new challenges in the functional interpreta-
tion of identified mutations and proteins, especially for the numerous 
low-frequency mutations1 and understudied proteins2.

Protein–protein interaction networks have been instrumental 
in prioritizing somatic mutations and predicting the functions of 
uncharacterized proteins3–5. However, many of the known interac-
tions were identified in noncancer contexts, limiting their relevance 
to cancer research. Recent efforts have started to address this gap 
by mapping interactions for selected proteins in specific cancer cell 
lines6,7. Despite these advances, unbiased, genome-scale identification 

of protein–protein interactions across diverse cancer types remains a 
daunting task. Moreover, in vitro cell line models have inherent limi-
tations, such as the absence of the tumor microenvironment. mRNA 
coexpression has also been used to infer functional associations but 
with varied success8,9. Studies have shown that protein expression data 
are more closely aligned with gene function and that protein coexpres-
sion is a much stronger predictor of functional association than mRNA 
coexpression10–14.

In this paper, we introduce FunMap, a functional network of 10,525 
genes constructed using a supervised machine learning method that 
integrates proteomics and RNA sequencing (RNAseq) data from 11 
cancer types, recently harmonized by the CPTAC pan-cancer working 
group15. FunMap connects functionally related genes with unprec-
edented precision, surpassing existing protein–protein interaction 
networks. Through network analysis, FunMap uncovers protein mod-
ules and a hierarchical modular organization linked to cancer hallmarks 
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A machine-learned functional map
We used supervised machine learning to integrate the diverse predic-
tive signals from all 32 proteomics and RNAseq datasets to construct 
a comprehensive functional network. Normal sample datasets were 
included because they were derived from tumor-adjacent normal 
tissues, which provide clinically relevant biological information16. 
Despite varying magnitudes, each dataset displayed functional rel-
evance (LLR > 1; Fig. 1d). To account for differences in sample size and 
intersample heterogeneity across datasets, we computed PCC-based 
mutual rank (MR) scores for all gene pairs within each dataset (Meth-
ods), as MR is a robust metric for assessing gene coexpression across 
diverse datasets17.

We used 50% of the gold-standard positive and negative gene 
pairs as training data to build an extreme gradient boosting (XGBoost) 
model, using MR scores from the 32 datasets as features to distinguish 
the positive and negative gene pairs (Methods). Feature importance 
analysis revealed that tumor protein features contributed the most 
(61.5%), followed by tumor RNA (20.7%), normal RNA (9.0%) and normal 
protein (8.8%) (Extended Data Fig. 2). Among individual datasets, the 
tumor protein data from LSCC contributed the most.

The trained model was applied to all 98,975,415 gene pairs, which 
were then sorted by predicted probabilities. LLRs were computed 
using the remaining 50% set-aside gold-standard gene pairs for the 
top-ranked gene pairs from the top 50,000 to 250,000 (Fig. 2a). 
Similarly, we trained two additional XGBoost models using only the 
16 proteomics datasets or the 16 RNAseq datasets and plotted the 
LLR curves. For comparison, we included LLR curves from a baseline 
method based on average PCCs across the 32 datasets and the LSCC 
tumor protein data alone. Interestingly, the LSCC tumor proteomics 
dataset performed as well as or better than the combined RNAseq 
datasets, underscoring the pivotal role of protein-level regulation in 
coordinating gene function. The XGBoost model combining all data-
sets clearly outperformed the baseline method according to average 
PCCs, highlighting the advantage offered by machine learning. It also 
outperformed the model combining only the proteomics datasets, 
which in turn outperformed the model combining only the RNAseq 
datasets or the LSCC tumor proteomics data alone, demonstrating the 
value of data integration in gene cofunctionality prediction.

Applying an LLR cutoff of 3.912 (that is, a likelihood ratio (LR) of 50) 
to the results from the XGBoost model combining all 32 datasets yielded 
a functional association network with 10,525 genes and 196,800 edges, 
which was named FunMap (Supplementary Table 2). With an LR of 50, 
edges are 50 times more likely to connect functionally associated gene 
pairs than unrelated pairs. We compared FunMap’s functional relevance 
and proteome coverage to other networks used in systems biology studies 
(Fig. 2b). FunMap and the ProHD12, both based primarily on protein coex-
pression, showed similar LR scores (50 and 56, respectively), although 
ProHD covered only 2,680 genes. These scores were much higher than 
those of BioPlex18 (LR = 28), HuRI19 (LR = 10), HI-Union19 (LR = 10) and 
BioGRID20 (LR = 14), networks based on experimentally obtained pro-
tein–protein interaction data or curated protein and genetic interaction 
data. While FunMap showed higher proteome coverage than HuRI and 
HI-Union, BioPlex and BioGRID covered more genes (13,854 and 17,259, 
respectively). The STRING network21 had the highest LR score (LR = 187) 
and deep coverage of 16,351 genes; however, unlike the other purely 
data-driven networks, it incorporated existing knowledge during network 
construction, including that used for our evaluation.

Genes in FunMap overlapped significantly with those in other net-
works (Fig. 2c) but its edges showed limited overlaps (Fig. 2d), indicat-
ing a substantial number of additional functional associations. While 
tumor versus normal differences were not used in FunMap’s construc-
tion, analysis of the five cancer types with normal samples revealed that 
60–74% of FunMap edges connected genes with consistent significant 
overexpression or underexpression in tumors (adjusted P < 0.01, Wil-
coxon rank-sum test; Fig. 2e). These percentages significantly exceeded 

and clinical phenotypes, predicts the functions of understudied cancer 
proteins, offers deeper insights into established cancer drivers and 
identifies drivers with low mutation frequency. To facilitate broader 
use in cancer research, we provide an interactive web application 
(https://funmap.linkedomics.org/) and source code (https://github.
com/bzhanglab/funmap).

Results
Protein coexpression strongly predicts cofunctionality
We used MS-based proteomics and RNAseq data from 11 tumor cohorts 
(Supplementary Table 1) to quantify gene coexpression at the protein 
and mRNA levels, respectively. Cancer types included breast invasive 
carcinoma (BRCA), clear cell renal cell carcinoma (CCRCC), colon 
adenocarcinoma (COAD), glioblastoma (GBM), hepatocellular car-
cinoma (HCC), head and neck squamous cell carcinoma (HNSCC), 
lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LSCC), 
ovarian serous cystadenocarcinoma (OV), pancreatic ductal adenocar-
cinoma (PDAC) and uterine corpus endometrial carcinoma (UCEC). 
Tumor samples ranged from 83 to 159 per cohort and five cancer types 
also had sufficient normal samples with proteomics and RNAseq data, 
leading to 16 proteomics and 16 RNAseq datasets (Fig. 1a). Each prot-
eomics dataset included 7,961–11,815 genes (Fig. 1b), with a median of 
10,441 and a union of 14,070 genes, among which 6,602 were identified 
across all 16 datasets and 10,024 were identified in 10 or more datasets 
(Fig. 1c). Each RNAseq dataset included 17,733–19,113 genes (Fig. 1b), 
with a median of 18,740 and a union of 19,855 genes, among which 15,603 
were identified across all 16 datasets (Fig. 1c).

To assess the relationship between gene coexpression and cofunc-
tionality, we used a previously published ‘gold standard’ derived from 
the Reactome pathway database12. This gold standard defines gene 
pairs coannotated in the same ‘detailed’ pathway (≤200 genes) as posi-
tive pairs and those without shared pathway annotations as negative 
pairs. It includes 205,284 positive and 11,327,528 negative gene pairs. 
This extensive dataset allowed us to quantify the functional relevance 
of any specific set of gene pairs by calculating the log likelihood ratio 
(LLR), with higher LLRs indicating stronger evidence of functional 
relevance (Methods).

For each proteomics and RNAseq dataset, we ranked gene pairs 
by their Pearson’s correlation coefficients (PCCs) and computed LLRs 
for the top 10,000–300,000 pairs. LLRs showed a decreasing trend 
across all datasets (Fig. 1d). In most tumor datasets, proteomics data 
consistently yielded higher LLRs than RNAseq, indicating greater 
functional relevance. However, in normal datasets, proteomics LLRs 
were similar to or lower than RNAseq LLRs. This may be explained 
by the low intersample heterogeneity in normal protein datasets 
(Extended Data Fig. 1), hindering the detection of correlations between 
functionally related genes. The low intersample heterogeneity likely 
also contributed to the lower LLRs in normal protein datasets com-
pared to tumor protein datasets. Interestingly, despite lower hetero-
geneity in tumor protein datasets compared to tumor RNA datasets 
(Extended Data Fig. 1), the higher LLRs in the protein data suggest 
that this level of heterogeneity is sufficient for detecting functionally 
relevant correlations.

To delve deeper into how mRNA and protein coexpression patterns 
relate to gene cofunctionality within the tumor datasets, we grouped 
gene pairs into 400 two-dimensional bins on the basis of their correla-
tions in both proteomics and RNAseq data and then computed LLRs 
for each bin (Fig. 1e). Gene pairs with higher protein correlation con-
sistently displayed elevated LLR scores, even when mRNA correlation 
was moderately positive or even negative. While gene pairs with higher 
mRNA correlation also tended to have higher LLR scores, these higher 
scores were more frequently observed in areas where there were strong 
correlations at both mRNA and protein levels. Together, these results 
demonstrate that, while both protein and mRNA correlations indicate 
gene cofunctionality, protein correlation is a much stronger predictor.

http://www.nature.com/natcancer
https://funmap.linkedomics.org/
https://github.com/bzhanglab/funmap
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Fig. 1 | Protein coexpression is a strong predictor of gene cofunctionality.  
a, Proteomics and RNAseq data from tumor (T) and normal (N) samples across 11 
cancer cohorts used in this study. The number of samples (n) is indicated in the 
plot. b, Numbers of quantified proteins and mRNAs in individual datasets.  
c, Numbers of proteins and mRNAs quantified across datasets. The numbers 
inside blue shaded boxes indicate the numbers of datasets with quantitative data. 

d, LLRs quantifying functional relevance of the top-ranking gene pairs based on 
the PCC from the top 10,000–300,000 in each dataset. e, Distributions of LLRs of 
the gene pairs with a given mRNA coexpression (x axis) and protein coexpression 
(y axis) pattern in the 11 tumor datasets. The density plots on the top and right 
visualize the mRNA and protein coexpression distributions, respectively.
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Fig. 2 | FunMap has high functional relevance, deep proteome coverage and 
a scale-free, modular and small-world network topology. a, A supervised 
machine learning model combining all 32 datasets (ALL_RNA_PRO (xgboost)) 
achieved higher LLRs across the whole range of top-scoring gene pair numbers 
from 50,000–250,000 compared with the models combining only proteomics 
datasets (ALL_PRO (xgboost)), only RNAseq datasets (ALL-RNA (xgboost)), the 
average PCC across the 32 datasets (ALL_RNA_PRO (average PCC)) or the PCCs 
from the LSCC tumor proteomics data alone (LSCC-T_Pro (PCC)). Applying an 
LLR cutoff of 3.912 (LR = 50) to results from the all-inclusive model produced a 
network with 10,525 genes and 196,800 edges, which was named FunMap.  
b, Scatter plot comparing functional relevance (y axis) and proteome coverage  
(x axis) of FunMap and other networks. The red horizontal lines in a and b 

indicate the LLR cutoff applied for FunMap, while the gray vertical line in a 
represents the number of gene pairs at the selected LLR cutoff. c, Gene overlap 
between FunMap and other networks. d, Edge overlap between FunMap and 
other networks. e, Box plots depicting proportion of edges connecting proteins 
with consistent significant overexpression or underexpression in tumors versus 
normal samples (n = 5 cohorts) for FunMap and other networks. For box plots, 
the center line indicates the median, box limits indicate the upper and lower 
quartiles and whiskers indicate 1.5× the interquartile range. P values were derived 
from a paired t-test followed by adjustment based on Holm’s method. f, Degree 
distribution of FunMap. p(x) is the probability of nodes having a specific degree 
x. g–i, Plots comparing the average clustering coefficient (g), density (h) and 
average shortest path length (i) of FunMap and other networks.
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those found in the other networks (P < 0.001, paired t-test; Fig. 2e), 
suggesting a stronger connection of FunMap to cancer.

FunMap showed a power-law degree distribution (Fig. 2f), indi-
cating a scale-free topology with highly connected hubs. Compared 
to other networks, FunMap was characterized by a relatively higher 
average clustering coefficient (similar to STRING), relatively higher 
density (similar to BioGRID) and the highest average shortest path 
length (Fig. 2g–i). Together, these results suggest the high functional 
relevance, cancer relevance and proteome coverage of FunMap, as well 
as its scale-free, modular and small-world properties.

Cancer-associated dense modules
A high clustering coefficient of FunMap suggests that genes in the 
network tend to form clusters or modules. To assess FunMap’s ability 
to connect genes encoding proteins in the same functional module, 
we used the CORUM database22, which contains 5,204 manually anno-
tated mammalian protein complexes involving 5,299 genes. Among 
the 196,800 edges in FunMap, 14,401 (7.3%) connected genes encod-
ing proteins in the same CORUM complex (Fig. 3a). Strikingly, both 
the absolute count and the percentage of the edges overlapping with 
CORUM in FunMap were higher than those in the BioPlex network 
(6,747, 4.4%; Fig. 3a). As BioPlex was designed to experimentally iden-
tify protein complexes through affinity purification combined with 
MS, these results underscore FunMap’s potential in unveiling tightly 
coregulated functional modules.

Some CORUM complexes associated with cancer-related 
processes displayed robust connectivity among their members 
in FunMap but not in BioPlex, such as complexes involved in cell 
cycle and DNA replication, gene expression and regulation, signal 
transduction, cell motility and innate immunity (Fig. 3b). Unlike 
BioPlex, which used data from only two in vitro cell lines, FunMap 
used data from over 1,000 human tumor samples, making it poten-
tially more effective in uncovering functional modules relevant to 
in vivo cancer biology.

To extend our analysis beyond CORUM complexes, we applied the 
iterative clique enumeration (ICE) algorithm23 to FunMap (Methods). 
This algorithm identifies relatively independent cliques, which are 
fully connected subnetworks (dense modules) with limited overlap to 
each other. Through this approach, we identified 281 dense modules, 
each with five or more genes (Supplementary Table 3). Of these, 130 
(46%) overlapped significantly with CORUM complexes, an additional 
37 (13%) overlapped with BioPlex complexes and another 49 (17%) 
overlapped with Gene Ontology (GO) annotations (false discovery 
rate (FDR) < 0.05, Fisher’s exact test followed by Benjamini–Hochberg 
adjustment; Fig. 3c and Supplementary Table 3). These results empha-
size the functional coherence of genes within these de novo identified 
dense modules.

To evaluate the cancer relevance of these dense modules, we com-
pared the average standardized protein abundance between tumor 
and normal samples for each of the five cancer types (Supplementary 
Table 3). Of the 276 modules with sufficient data for statistical analysis, 
273 showed significantly different abundance in tumors compared with 
normal samples in at least one cancer type (adjusted P < 0.01, Wilcoxon 
rank-sum test followed by Benjamini–Hochberg adjustment). Notably, 
43 of the 273 (16%) had no significant overlap with CORUM, BioPlex 
or GO annotations (adjusted P > 0.01, hypergeometric test) and 203 
(74%) had more than half of their edges unique to FunMap compared 
to other networks (Supplementary Table 3). These observations under-
score the value of FunMap in uncovering previously unrecognized, 
cancer-relevant dense modules.

A total of 78 dense modules showed significant differential expres-
sion across all five cancer types, with 36 (46%) having less than 25% 
edge overlap with the other networks (Extended Data Fig. 3a). Many 
overexpressed modules were enriched in processes related to replica-
tion and proliferation. Moreover, three highly overexpressed modules 

(cliques 160, 96 and 54) were associated with extracellular matrix (ECM) 
organization (Fig. 3d,e and Extended Data Fig. 3b–e) and higher mod-
ule levels were significantly associated with or trending toward worse 
overall survival (OS) in various cancer types (Fig. 3f, Extended Data 
Fig. 3f,g and Supplementary Table 3). Fewer modules were underex-
pressed and those related to cell adhesion (cliques 46 and 17; Fig. 3g,h 
and Extended Data Fig. 3a) may contribute to increased cell motility 
and tumor aggressiveness. This was supported by tumors with under-
expression of clique 46 showing worse OS in HCC (Fig. 3i).

In summary, these results demonstrate the ability of FunMap to 
identify functionally and clinically relevant dense modules. Impor-
tantly, many of these modules were associated with cancers of diverse 
histological origin but had limited overlap with other networks, high-
lighting a unique connection of FunMap to cancer biology and disease 
progression.

Hierarchical modular organization linked to cancer hallmarks
The coexistence of scale-free topology (Fig. 2f) and a high cluster-
ing coefficient (Fig. 2g) in FunMap indicates a hierarchical modular 
organization, where genes form smaller modules that combine into 
larger ones across multiple scales24. Using the network seriation and 
modularization (NetSAM) algorithm25, a specialized computational 
tool for uncovering the hierarchical organization in biological net-
works, we identified eight hierarchical levels and 255 modules with 
at least 20 genes in FunMap (Fig. 4 and Supplementary Table 4). Of 
these, 243 (95%) significantly overlapped with at least one GO anno-
tation (FDR < 0.05, Fisher’s exact test followed by Benjamini–Hoch-
berg adjustment; Supplementary Table 4), indicating their functional 
coherence.

We focused on the enriched GO annotations that have been previ-
ously linked to cancer hallmarks26,27 (Supplementary Table 4). The top 
ten largest branches were associated with various hallmarks (Fig. 4 and 
Methods), including tumor microenvironment-related hallmarks such 
as avoiding immune destruction and tumor-promoting inflammation, 
with the largest branch linked to tumor-promoting inflammation (1,118 
genes). These findings underscore the strength of using tumor-derived 
data in network construction, which can capture complex, biologically 
important information that may be missed in cell-line-based protein–
protein interaction networks.

To assess the clinical importance of these modules, we calculated 
meta P values for differential expression between tumors and nor-
mal samples across the five cancer cohorts (Supplemental Table 4). 
Tumor-overexpressed branches were linked to hallmarks such as 
enabling replicative immortality, genome instability and mutation, 
sustaining proliferative signaling, evading growth suppressors, 
avoiding immune destruction, resisting cell death and activating 
invasion and metastasis (Fig. 4). A detailed examination of these 
branches revealed their hierarchical functional organization. For 
example, the level 3 module L3_M55, associated with ‘protein fold-
ing’ and ‘protein transport’, was divided into two level 4 modules: 
L4_M58 (protein folding) and L4_M59 (protein transport) (Fig. 5a). 
The latter was further split into level 5 modules for ‘protein target-
ing to the endoplasmic reticulum (ER)’ (L5_M51) and ‘ER to Golgi 
vesicle-mediated transport’ (L5_M50). In tumor cells, ongoing replica-
tion, growth and genetic aberrations disrupt protein homeostasis28, 
increasing the need for protein folding and related protein transport 
to resist cell death and avoid immune destruction, two hallmarks 
linked to this branch. Overexpression of the protein folding mod-
ule (L4_M58) was associated with worse OS in CCRCC (Fig. 5b), with 
similar trends in HNSCC, LUSCC and LUAD (Supplementary Table 4), 
supporting its protumor role.

Tumor-underexpressed branches were linked to cancer hallmarks 
including deregulating cellular energetics, tumor-promoting inflam-
mation, inducing angiogenesis and activating invasion and metastasis 
(Fig. 4). Although the association with tumor-promoting hallmarks 
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Fig. 3 | FunMap reveals known and previously unidentified dense modules 
associated with cancer biology and clinical phenotype. a, Overlap among 
gene pairs in FunMap, BioPlex and gene pairs encoding proteins in the same 
CORUM complex. b, Examples of CORUM complexes displaying robust 
connectivity among their complex members in FunMap but not in BioPlex.  
c, Numbers of de novo predicted FunMap dense modules with a significant 
overlap with CORUM complex, BioPlex complex or GO term (P < 0.05, Fisher’s 
exact test, blue shaded sections). d, A tumor-overexpressed, ECM-associated 
dense module (clique 160). Edge color indicates a lack of overlap in BioGRID, 
BioPlex, HI-union, STRING and CORUM (pink) or overlap in any of these resources 
(gray). e, Box plots comparing the average protein abundance of clique 160 in 
tumor and normal samples demonstrating tumor overexpression in five cancer 
cohorts. The number of samples (n) is indicated in parentheses. P values were 
determined using a two-sided Wilcoxon rank-sum test. f, Kaplan–Meier plots 
depicting OS difference in persons with CCRCC, HCC and LUAD stratified by the 

median value of the average abundance of proteins in clique 160. The number 
of samples (n) is indicated on each plot. Log-rank P values and hazard ratios 
(HRs), shown with 95% confidence intervals, were derived from Cox proportional 
hazard models. g, A tumor-underexpressed, cell-adhesion-associated dense 
module (clique 46). The edge color is as described in d. h, Box plots comparing 
the average protein abundance of clique 46 in tumor and normal samples 
demonstrating tumor underexpression in five cancer cohorts. The number of 
samples (n) is indicated in parentheses. P values were determined using a two-
sided Wilcoxon rank-sum test. i, Kaplan–Meier plots depicting OS difference in 
persons with HCC stratified by the median value of the average abundance of 
proteins in clique 46. The number of samples (n) is indicated in the plot.  
P values and HRs were obtained as described in f. *P < 0.05, **P < 0.01, ***P < 0.001 
and ****P < 0.0001. For box plots, the center line indicates the median, box 
limits indicate the upper and lower quartiles and whiskers indicate 1.5× the 
interquartile range; the number of samples per group is indicated in parentheses.
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initially seemed counterintuitive, further examination provided deeper 
insight. For example, the branch rooted in L2_M12, associated with 
inducing angiogenesis and activating invasion and metastasis, was 
enriched in functional categories including ECM structure, cell adhe-
sion and angiogenesis, with modules deeper within the branch showing 
more specialized roles (Fig. 5c). While L2_M12 was overall underex-
pressed, it was divided into an underexpressed module (L3_M19) tied 
to antitumor functions such as cell adhesion and an overexpressed 
module (L3_M18) linked to protumor functions such as angiogenesis. 
Both overexpressed and underexpressed modules were enriched with 
ECM components but antiangiogenic ECM components were enriched 

in underexpressed modules, while proangiogenic ECM components 
were enriched in overexpressed modules (Supplementary Table 4). 
Interestingly, underexpressed dense modules related to cell adhe-
sion (cliques 17 and 46) were entirely covered by L3_M19, whereas the 
overexpressed dense modules related to ECM (cliques 54, 96 and 160) 
were found entirely within L3_M18. Consistent with the good-prognosis 
association observed for clique 46 (Fig. 3i), higher expression of L3_
M19 was correlated with a longer OS in HCC (Fig. 5d), with a similar 
trend observed for LUAD and CCRCC (Supplementary Table 4). In 
contrast, higher expression of the tumor-overexpressed module L4_
M13, which was under L3_M18 and included most components from 
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the poor-prognosis cliques 54, 96 and 160 (Fig. 3f and Extended Data 
Fig. 3f,g), was correlated with a shorter OS in HCC (Fig. 5e) and other 
cancer types (Supplementary Table 4). Thus, the hierarchical module 
analysis not only reinforced the clique-based analysis results but also 
revealed the broader functional context and systematic organization 
of the dense modules.

In summary, network analysis revealed a hierarchical modular 
organization of FunMap, in which the major branches were statistically 
aligned to cancer hallmarks, supported by both functional analysis and 
the examination of clinical outcomes.

Connecting somatic mutations to protein modules
A major goal of cancer proteogenomics is to understand how somatic 
mutations impact the cancer proteome. Previous studies used uni-
variate analysis to examine the cis and trans effects of individual 
mutations29,30. Here, we used a machine learning approach to simul-
taneously model the impact of all significant mutations on individual 
functional modules in FunMap to better capture the complexity of 
biological systems (Methods).

We identified 77 genes that were significantly mutated (q value < 0.1) 
in at least one of the ten CPTAC cancer types. For each of the 536 modules 
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Fig. 5 | In-depth analysis of selected FunMap branches and their clinical 
associations. a, Hierarchical organization of five modules related to protein 
folding and protein transport. The node color and size of the modules are the 
same as in Fig. 4. P values were determined using a hypergeometric test.  
b, Kaplan–Meier plots depicting OS difference in persons with CCRCC stratified 
by the median value of the average abundance of proteins in module L4_M58. 
The number of samples (n) is indicated in the plot. Log-rank P values and HRs, 
shown with 95% confidence intervals, were derived from Cox proportional 
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Fig. 6 | Connecting somatic mutations to functional protein modules. 
a, Heat map depicting the most important mutant genes in predicting the 
protein abundance of 32 modules. The modules were clustered on the basis 
of membership similarity. The heat map color corresponds to the relative 
importance in the XGBoost model. b, Associations defining module L2_M40. 
The node size corresponds to the node degree. c, Box plot comparing L2_M40 
protein abundance in samples with and without KEAP1 mutations in selected 
cancer cohorts. The number of samples (n) is indicated in parentheses. P 
values were derived from a two-sided Wilcoxon rank-sum test. d, Associations 

defining module L3_M58. The node size corresponds to the node degree. e, 
Box plot comparing L3_M58 protein abundance in samples with and without 
TP53 mutations across cancer cohorts. The number of samples (n) is indicated 
in parentheses. P values were derived from a two-sided Wilcoxon rank-sum 
test. f, Clique 254, a CT antigen-associated dense module. *P < 0.05, **P < 0.01, 
***P < 0.001 and ****P < 0.0001; NS, not significant. For box plots, the center 
line indicates the median, box limits indicate the upper and lower quartiles and 
whiskers indicate 1.5× the interquartile range; the number of samples per group is 
indicated in parentheses.
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identified by NetSAM or ICE, we trained an XGBoost model to predict the 
average standardized protein abundance on the basis of the mutation 
status of the 77 genes. In a fivefold cross-validation based on data from 
1,021 tumors across ten cancer types, 32 modules showed a nonrandom 
correlation (PCC > 0.2, P < 0.00001) between predicted and actual abun-
dance, suggesting a significant connection between mutation status 
and protein abundance of these modules. Feature importance analysis 
highlighted TP53 as a top predictor across all 32 modules, consistent with 
its role as a master regulator, while some other genes were specific to 
certain modules (Fig. 6a and Supplementary Table 5).

Hierarchical clustering of the 32 modules based on pairwise 
membership overlap revealed a predominant cluster with 19 modules 
(highlighted by red lines in the dendrogram in Fig. 6a). These modules 
comprised genes involved in the cell cycle or cellular division processes 
(Supplementary Tables 3 and 4). The most distinctive mutant genes 
defining this cluster included RB1, ACVR2A, SETD1B and TBC1D23. 
Mutations or deletions of RB1 are common across various cancers and 
disrupt cell-cycle control, leading to uncontrolled cell proliferation31. 
While the roles of ACVR2A, SETD1B and TBC1D23 are less extensively 
documented, mutations in these genes have been implicated in cell 
proliferation and tumorigenesis32,33.

Another cluster of three modules were dominated by KEAP1 muta-
tions (highlighted by pink lines in the dendrogram in Fig. 6a), with 
L2_M40, a module comprising 22 genes (Fig. 6b), showing a particu-
larly strong effect. L2_M40 exhibited increased protein abundance 
in tumors with KEAP1 mutations across all cancer types that had a 
sufficient number of KEAP1-mutant samples for statistical comparison 
(Fig. 6c). Moreover, the expression of genes in this module showed 
the highest degree of coregulation at both mRNA and protein levels 
(average PCC > 0.5) in these four cancer types compared to the other 
cancer types (Extended Data Fig. 4a). Importantly, all genes in the 
module are known targets of nuclear factor erythroid 2-related factor 
2 (NRF2)34–41, which is activated by loss-of-function mutations in KEAP1, 
the gene encoding an inhibitor of NRF2. Therefore, this example serves 
as a strong positive control for our prediction.

Despite its broad importance, TP53 mutations showed the strong-
est importance for modules C253 and L3_M58 (Fig. 6a). Module L3_M58, 
comprising 51 genes including highly interconnected constitutive 
photomorphogenesis 9 (COP9) signalosome subunits (Fig. 6d), showed 
decreased protein abundance in TP53-mutant tumors across nine of 
the ten cancer types, with a statistically significant decrease in five 
(Fig. 6e). Notably, gene expression in this module was more coregu-
lated at the protein level than at the RNA level in most of the cancer 
types (Extended Data Fig. 4b). The COP9 signalosome is known to 
promote p53 degradation by targeting it for ubiquitination42. Our data 
suggest a negative feedback loop in which wild-type p53 activates the 
signalosome to suppress p53 levels and the process is disrupted by 
TP53 mutations, leading to increased mutant p53 accumulation. This 
is consistent with the elevated p53 levels observed in TP53-mutant 
tumors (Extended Data Fig. 4c).

Some modules, such as C254, lacked a dominant predictor 
(Fig. 6a). This module, comprising four melanoma antigen gene family 
cancer/testis (CT) antigens and a testis-specific protein DCAF4L2 (ref. 
43) (Fig. 6f), showed no significant associations with any top-ranked 
mutant genes in univariate analysis. However, several top predictors, 
such as PBRM1, ATRX, TP53 and KDM5C, have been linked to immuno-
suppression and immunotherapy response44–48, aligning with the role 
of C/T antigens in triggering immune responses.

In summary, our machine learning approach effectively connected 
somatic mutations with protein abundance across various functional 
modules. While some modules had clear dominant predictors and 
others did not, our models consistently identified key mutant genes 
whose functions aligned with the overarching function of the modules, 
demonstrating a clear functional basis for our predictions.

Illuminating understudied cancer proteins
Despite the massive disparity in our knowledge of individual genes 
(ranging from 9,282 publications in the Gene Reference Into Function 
(GeneRIF) database for TP53 to zero publications for 700 ‘dark’ genes), 
protein degrees in FunMap (that is, the number of edges) were compa-
rable across the entire spectrum of knowledge depth (Fig. 7a), offering 
a great opportunity to illuminate understudied genes. Notably, while 
known cancer driver genes were concentrated among well-studied 
genes, proteins differentially expressed between tumor and normal 
samples, according to a meta-analysis of five cancer types, were evenly 
distributed across the proteome, including the 700 dark genes with 
no publications (Fig. 7a and Supplementary Table 6). Specifically, 
125 of these dark genes were highly significantly overexpressed in 
tumors, whereas 92 were highly significantly underexpressed (meta 
P value < 1.0 × 10−16; Fig. 7b).

To gain functional insights into the 700 dark genes, we used the 
network topology analysis algorithm in WebGestalt49 to establish 
a neighborhood of 50 genes for each dark gene and performed GO 
enrichment analysis (Methods). We found significant enrichment in 
biological processes for 76.2% of the genes, in molecular functions 
for 74.5% of the genes and in cellular components for 65.5% of the 
genes (FDR < 0.05, Fisher’s exact test followed by Benjamini–Hoch-
berg adjustment; Fig. 7c). This analysis connected 496 of the 700 dark 
genes, including the 200 shown in Fig. 7b, to at least one GO annotation. 
Although these genes lack publication records in GeneRIF, 315 have 
existing GO annotations. Of these, 183 (58%) had their top ten predicted 
GO terms overlap with one or more existing annotations. This high 
overlap, compared to just 0.63 from random gene sets, represents a 
290-fold increase, underscoring the effectiveness of our approach in 
predicting gene function.

The dark genes RBM34 and RBM12B were among the most signifi-
cantly overexpressed genes in tumors (meta P < 1.0 × 10−100; Fig. 7b and 
Extended Data Fig. 5a), consistent with their frequent somatic ampli-
fication across various cancers (Extended Data Fig. 5b). Both genes 
encode RNA-binding motif (RBM) proteins, although their functions 

Fig. 7 | FunMap predicts functions of understudied proteins. a, Heat map 
of the adjacency matrix of FunMap with genes sorted on the basis of GeneRIF 
counts. Genes with a GeneRIF count of 0 are defined as dark genes. The edge 
count depicts the log2 count of the number of edges per gene. The cancer driver 
annotation indicates whether a gene is annotated as a cancer gene in the CGC 
database. Tumor versus normal annotation plots of the signed −log10 meta P 
value comparing protein abundance in tumor versus normal across cancer 
cohorts. A positive sign indicates higher abundance in tumor and a negative sign 
indicates lower abundance in tumor compared to normal. b, Heat map depicting 
the signed −log10 meta P values (P < 1.0 × 10−16) computed as described in a. The 
yellow text indicates the genes analyzed in subsequent panels. c, Proportions 
of the dark genes with significantly enriched GO terms in enrichment analysis 
of the network neighborhood. P values were derived from a hypergeometric 
test and FDR-adjusted P values were derived using the Benjiamini–Hochberg 

method. d, Network neighborhood of CXorf38 with genes associated with the 
enriched GO terms highlighted. e,f, Relationship between protein abundance of 
CXorf38 and RNAseq-inferred ESTIMATE ImmunoScore in HNSCC (e) and LSCC 
(f) tumors. The number of samples (n) is indicated in the plots. P values were 
derived from two-sided Spearman’s rank correlation. The shaded area depicts 
the 95% confidence interval. g, Network neighborhood of MAB21L4 with genes 
associated with the enriched GO term highlighted. h,i, Protein abundance (log2 
MS1 intensity) of MAB21L4 by histological tumor grade in HNSCC (h) and LUAD 
(i) tumors. The number of samples (n) is indicated in parentheses. P values were 
derived from a two-sided Jonckheere–Terpstra test. For box plots, the center 
line indicates the median, box limits indicate the upper and lower quartiles and 
whiskers indicate 1.5× the interquartile range; the number of samples per group is 
indicated in parentheses.
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have not been experimentally characterized. The network neighbor-
hood of RBM34 was enriched for genes involved in ribosomal RNA pro-
cessing (Extended Data Fig. 5c), whereas that of RBM12B was enriched 
for genes associated with RNA splicing (Extended Data Fig. 5d). This 
analysis connected their amplification and overexpression to distinct 
functional roles, supported by computational inference from the GO 
consortium on the basis of an orthogonal phylogenetic approach50.

The dark gene CXorf38 was significantly overexpressed in tumors 
compared to normal samples in four of the five cancer types (meta 
P = 8.6 × 10−31; Extended Data Fig. 6a). Its network neighborhood was 
enriched for genes associated with the cytokine-mediated signal-
ing pathway, major histocompatibility complex protein binding and 
proteasome complex (Fig. 7d), suggesting an immune function. As 
supporting evidence, CXorf38 protein levels correlated significantly 

0.7%
(4)

23.2%
(139)

76.2%
(457)

Biological process

0.8%
(5)

24.7%
(148)

74.5%
(447)

Molecular function

1.0%
(6)

33.5%
(201)

65.5%
(393)

Cellular component

P value > 0.05
P value ≤ 0.05 and FDR > 0.05
FDR ≤ 0.05

c g

22.5 23.0 23.5 24.0

Protein level of CXorf38

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

ES
TI

M
AT

E:
 Im

m
un

eS
co

re

HNSCC (n = 108)
Spearman ρ = 0.50,

P = 3.4 × 10–8

LSCC (n = 108)
Spearman ρ = 0.52,

P = 3.9 ×10–9

23.5 24.0 24.5

Protein level of CXorf38

2,000

4,000

6,000

8,000

10,000

ES
TI

M
AT

E:
 Im

m
un

eS
co

re

e f

a b

700 dark
genes

22.5

23.0

23.5

24.0

24.5

25.0

Pr
ot

ei
n 

le
ve

l o
f M

AB
21

L4

Histological grade

HNSCC
Jonckheere–Terpstra test: –0.33,

P = 0.0005

LUAD
Jonckheere–Terpstra test: –0.34,

P = 0.00815h

22.5

23.0

23.5

24.0

24.5

Pr
ot

ei
n 

le
ve

l o
f M

AB
21

L4

i

Cytokine-mediated signaling pathway

MHC protein binding/proteasome complex
Epithelial cell di�erentiation

–100 –50 0 50 100

Signed –log10(meta P-value)

d

G1
(20)

G2
(77)

G3
(11)

Histological grade

G1
(20)

G2
(77)

G3
(11)

Ed
ge

 c
ou

nt
 (l

og
2)

C
an

ce
r d

riv
er

s

Tu
m

or
 v

er
su

s 
no

rm
al

(s
ig

ne
d 

–l
og

10
 P

 v
al

ue
)

GeneRIF
count

1,000

100

10

0 5

–1
00 0

10
0

1,000 100 10

Density

10–8 10–7 10–6

WDR75 UTP15 NOL10 UTP18 BRIX1 MPHOSPH10 RBM34 RPL7L1
RBMX2 RBM12B RBM33 FAM91A1 ABT1 URB2 IMP4 PRPF38B
NLE1 MED6 KNOP1 FAM76B C11orf58 TJAP1 SNRNP27 SF3B5
TRIR C5orf51 HEATR6 PRKRIP1 C19orf47 CCDC117 DHX57 C17orf75

TMEM263 SLC35E1 MAK16 PRRC2B DDX55 C8orf33 RPRD2 MEA1
SNRPF LLPH UBFD1 UBN2 BTF3L4 ZNF787 DPY19L1 WDR89
NKTR INTS5 GTF3C6 RSBN1L AAR2 HNRNPA1L2 RBIS C2orf49

LMBRD2 ZNF316 COPS7B THUMPD3 TMEM181 C9orf78 PRRC1 CWC25
C1orf131 CCDC71L TASOR2 ZNF579 ARMC6 MANBAL ZNF45 SYS1

RPF1 DDX19A ZC3H8 RBM48 MED10 CFAP20 TMA16 NKAPD1
ZBTB41 ARL6IP4 LSM14B HAUS3 TRABD RPL23A RPP25L LRP11

CDKN2AIPNL HAUS4 ZNF428 CXorf38 HAUS2 NANP RPL37A TTC13
TMUB2 WDCP NXT2 POLR2L CFAP298 SS18L2 SRPRA PPP1R37
TRMT13 C1orf174 ZC3H7A CDC26 MOB3A BSDC1 TMEM167B C16orf91
DUS3L YJU2 RPUSD2 CERCAM SUGP2 AL022312.1 GPALPP1 COPRS
ZMYM1 CCDC59 FAM76A OGFOD3 ZNF574 C1orf162 CRACR2B TEKT3

AC119396.1 IGHV3-72 CYSRT1 FAM166B SOWAHD PRR15L OAF WDSUB1
LURAP1L IGLL5 DCDC2B PNMA8B C8orf82 AC007906.2 TMEM222 SNED1
ARMCX6 THEM6 CFAP126 C15orf40 RAB44 GLTPD2 PPCDC CFAP161
DNAJC28 UFSP2 EPS8L1 RASL12 IFT22 PXMP4 PPP1R32 EFCC1

DMWD TBC1D13 ENKD1 NHLRC3 MIOS SAXO2 USHBP1 DHRS7B
DPEP2 ASMTL RFESD C1orf226 C11orf96 SNX24 LRCH2 LRRC46

C1orf198 TRAPPC5 MYL6 POTEI COMMD2 AGFG2 SSC5D CROCC2
PGLS FAM126B PYURF CCDC102A C11orf52 C1orf87 HDHD3 PPP6R2

CCDC121 BORCS6 ACTR10 MAB21L4 FAM185A PRXL2B SMIM24 SDR39U1
KIAA0408 SMCO3 MRGPRF MTFR1L GATD1 SBSPON COPS7A MISP3

DMXL1 WDR13 MBLAC2 C11orf54 HDHD2 MTMR10 SCRN2 ECHDC2
PALM

PARP10

RNF213

RELB

OGFR

CXorf38

STAT1
GSDMD

IRF9 RELA
ICAM1

GBP4

SP110

TAP2

IFIH1

UBA7

PSMB9

PSMB8

DDX60
PARP14

IL4I1

PARP12

GBP1

FBXO6
STAT2

NMI

TAPBP

DDX58

SP100
DTX3L

PSME1

TRIM22

IFI35

OASL

TYMP

NFKBIE
PML

UBE2L6

NFKB1

OAS3

CD83

TRIM21 TAP1

OAS2

APOL2
PARP9

PSMB10

BIRC3

CCL2

ISG15

XAF1

NFKB2

PPP1R13L

KRT78

MAB21L4
KRT4

RAB25

SPRR1A

KRT19

LY6D

NIBAN2
EVPL

SDR16C5

SCEL

CDC42BPG

TMPRSS11E
SERPINB13

SPINT1

CDH1

KRT13

PKP3

CRNN

CTNNA1

NCCRP1C6orf132

ANXA1

SERPINB5TRIM29
JUP

CLIC3
C1orf116

ESRP2

A2ML1

C19orf33

LYPD3

DSG3

OCLN

SULT2B1
TACSTD2

SPRR2D

MUC1

KRT80

EPS8L1 ST14

SPRR3

LMO7

ZNF185
PPL TGM1

IL1RN

PTK6

IVL

ESRP1

http://www.nature.com/natcancer


Nature Cancer

Analysis https://doi.org/10.1038/s43018-024-00869-z

BR
C

A
C

C
RC

C
C

O
AD

G
BM

H
N

SC
C

LS
C

C
LU

AD
O

V
PD

AC
U

C
EC

TPBG (11)
SKIL (16)
SIRT2 (4)
KLF5 (16)

MBTPS2 (12)
PLCL2 (18)

TMEM218 (4)
LANCL2 (5)
TBC1D1 (18)
INPPL1 (37)

RTKN (14)
DAAM1 (19)

LGI3 (14)
C16orf72 (6)
SLC7A8 (9)

0

2

4

6

8

10

12

14

16

18

20

M
utation count

a c

d e

g

Cancer implication of driver genes Genes harboring copy number alterations > 1% in TCGA PanCancer Atlas from cBioPortal (5,656 samples)

Study of origin

SKIL (3q26.2)

LANCL2 (7p11.2)

LGI3 (8p21.3)

SIRT2 (19q13.2)

INPPL1 (11q13.4)

KLF5 (13q22.1)

C16ORF72 (16p13.2)

MBTPS2 (Xp22.12)

SLC7A8 (14q11.2)

9%

6%

3%

2.8%

2.5%

1.3%

1.2%

1.1%

1.1%

Genetic Alteration Amplification Deep deletion No alterations

Study of origin
(TCGA, PanCancer Atlas) BRCA COAD GBM HNSCCCCRCC LUADLSCC OV PDAC UCEC

0
0.2
0.4
0.6
0.8

AU
RO

C

0
0.02
0.04
0.06
0.08

AU
PR

C

N
o 

ne
tw

or
k

Bi
oG

rid

Bi
oP

le
x

Fu
nM

ap

H
I-u

ni
on

ST
RI

N
G

0
0.02
0.04
0.06
0.08

AP
@

k

+3.7%
–9.1% +6.5% –3.7% –12.0%

–25.9%
–7.4%

+27.8% +14.8%
–18.2%

–58.3%
–3.5%

+35.7%
+11.6%

–23.2%

5 10 15 20
Number of unlabeled data points chosen

from the top rated

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f c
ho

se
n 

th
at

 a
re

 p
os

iti
ve No network

BioGrid
BioPlex
FunMap
HI-union
STRING

f

CPTAC tumor versus normal: LGI3 RNA and protein abundance

0 0 0
1 1

2 2
3

6

0

2

4

6

8

10+

TM
EM

21
8

LG
I3

PL
C

L2
C

16
or

f7
2

TB
C

1D
1

LA
N

C
L2

SL
C

7A
8

M
BT

PS
2

TP
BG

RT
KN

D
AA

M
1

SK
IL

IN
PP

L1
KL

F5
SI

RT
2

N
um

be
r o

f m
an

ua
lly

 c
on

fir
m

ed
ca

su
al

 p
ub

lis
at

io
ns

DepMap cancer cell lines: LGI3 dependency scores

FAT1
KO
(45)

LGI3
KO
(45)

FAT1
KO
(76)

LGI3
KO
(76)

FAT1
KO
(50)

LGI3
KO
(50)

FAT1
KO
(46)

LGI3
KO
(46)

–0.2

0

0.2

0.4

C
RI

SP
R 

KO
 d

ep
en

de
nc

y 
sc

or
e

(p
os

iti
ve

 v
al

ue
s 

in
di

ca
te

 in
cr

ea
se

d 
ce

ll 
fit

ne
ss

)

P = 2.78 × 10–2

P = 5.68 × 10–3
P = 1.15 × 10–2

P = 6.47 × 10–3
P = 2.25 × 10–5

P = 1.80 × 10–2
P = 7.03 × 10–7

P = 2.04 × 10–5

b
LG

I3
 R

N
A 

(lo
g 2 R

SE
M

)

LG
I3

 p
ro

tr
ei

n 
(lo

g 2 M
S1

 in
te

ns
ity

)

0 15.0

15.5

16.0

16.5

17.0

1

2

3

4

5

6

N
(72)

T
(103)

N
(46)

T
(108)

N
(94)

T
(108)

N
(101)

T
(106)

N
(15)

T
(105)

N
(99)

T
(108)

BRCA GBM LUAD PDAC

CCRCC HNSCC LSCC LUAD PDAC LSCC

P = 3.60 × 10–15 P = 2.61 × 10–16 P = 8.61 × 10–43 P = 1.06 × 10–59 P = 1.52 × 10–5 P = 7.83 × 10–5**** **** **** **** **** ****

Fig. 8 | Discovery of cancer drivers with low mutation frequency using 
FunMap. a, Performance comparison between models trained with various 
networks and without network information, using AUROC, AUPRC or AP@k as 
evaluation metrics. b, Percentages of hidden positive genes among the top 20 
predictions generated by various models. c, Mutation frequencies across various 
cancer types for the top 15 newly predicted cancer drivers by the FunMap-based 
model. d, Number of manually confirmed publications with direct experimental 
evidence implicating a causal role for a given predicted cancer driver. e, Oncoplot 
depicting copy number alterations in the newly predicted cancer drivers with 
>1% alteration frequencies in TCGA Pan-Cancer Atlas in cBioPortal. f, Box plots 
comparing LGI3 RNA expression and LGI3 protein abundance in tumor versus 

normal samples demonstrating tumor underexpression in the cohorts shown. 
The number of samples (n) is indicated in parentheses. P values were derived 
from a two-sided Wilcoxon rank-sum test. g, Violin plots depicting dependency 
scores after LGI3 or FAT1 CRISPR KO in cell lines from annotated lineages 
downloaded from the DepMap resource. The number of samples (n) is indicated 
in parentheses. P values were derived from a one-sample, one-tailed t-test. For 
each cancer type, the first and second P values correspond to the significance 
of LIG3 KO and FAT1 KO, respectively. For box plots, the center line indicates the 
median, box limits indicate the upper and lower quartiles and whiskers indicate 
1.5× the interquartile range; the number of samples per group is indicated in 
parentheses.
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with the immune infiltration scores computed on the basis of RNAseq 
data in most CPTAC cancer types (Fig. 7e,f and Extended Data Fig. 6b). 
Moreover, single-cell data from the Human Protein Atlas show that 
CXorf38 is highly expressed in immune cells (Extended Data Fig. 6c), 
reinforcing its inferred immune role.

The dark gene MAB21L4 was significantly underexpressed in 
tumors in three cancer types (meta P = 9.9 × 10−56) (Extended Data 
Fig. 6d). Its network neighborhood was enriched for genes associated 
with epithelial cell differentiation (Fig. 7g), the suppression of which 
has a critical role in tumorigenesis. Remarkably, MAB21L4 protein 
abundance was lower in poorly differentiated tumors (G3) compared 
to well differentiated (G1) and moderately differentiated (G2) tumors 
in both HNSCC and LUAD (Fig. 7h,i). These findings, consistent with a 
recent study showing that loss of MAB21L4 blocks differentiation to 
drive the development of squamous cell carcinoma51, provide strong 
evidence to support a tumor suppressor role of MAB21L4.

Together, our systematic evaluation using existing GO annota-
tion and the specific examples illustrate the utility of FunMap as a 
systematic framework to illuminate understudied genes, including 
many understudied cancer-associated proteins.

Discovery of drivers with low mutation frequency
Leveraging advancements in graph neural network (GNN)-based deep 
learning, we developed a positive–unlabeled (PU) learning algorithm 
that integrates the FunMap network, gene mutation significance scores 
from ten CPTAC cohorts and known cancer genes to train a graph atten-
tion network (GAT) model for classifying unlabeled genes as cancer or 
noncancer genes (Extended Data Fig. 7 and Methods).

For performance evaluation, we used 274 cancer genes from the 
original Cancer Gene Census (CGC)52 as the positive set and 449 genes 
added later as hidden positives (Supplementary Table 7). The FunMap 
GAT model outperformed a random forest classifier trained without 
using network data, with a 6.5% improvement in area under the receiver 
operating characteristic (AUROC), 27.8% improvement in area under 
the precision–recall curve (AUPRC) and 35.7% improvement in the aver-
age precision at k (AP@k) (Methods). We also trained alternative GAT 
models using other networks including BioGrid20, BioPlex18, HI-union19 
and STRING21. The FunMap GAT model outperformed all alternative 
models for all three evaluation metrics (Fig. 8a).

Among the top FunMap GAT predictions, 60.0% of the top 5, 
40% of the top 10 and 25% of the top 20 were hidden positives, far 
exceeding the expected 4.3% by random chance (P < 0.01, Fisher’s 
exact test). In this analysis, models incorporating network data clearly 
outperformed those that did not (Fig. 8b), and there was minimal 
overlap among the top 20 predictions when different networks were 
used or when network data were not used (Supplementary Table 7). 
These results underscore the notable impact of network information 
on prediction outcomes.

Despite low mutation frequencies (Fig. 8c), 12 of the top 15 (80%) 
putative driver genes predicted by FunMap and not covered by CGC had 
at least one publication that supports a causal role in cancer through 
genetic and/or pharmacologic perturbation in model systems (Fig. 8d, 
Supplementary Table 7 and Methods). Moreover, nine genes showed 
frequent copy number alterations in TCGA data (Fig. 8e), providing 
independent support for our predictions because copy number data 
were not used in the FunMap GAT model. Notably, LGI3, although lack-
ing causal evidence in the literature (Fig. 8d), was recurrently deleted 
in 3% of the 5,656 TCGA samples and significantly downregulated at 
both RNA and protein levels in tumors from CPTAC cancer cohorts 
where LGI3 was quantified in both tumor and normal samples (Fig. 8f). 
Furthermore, an analysis of clustered regularly interspaced short palin-
dromic repeats (CRISPR) knockout (KO) dependency scores for cancer 
cell lines available through DepMap revealed a significant increase 
in cell fitness across various lineages following LGI3 KO (P < 0.05, 
one-sample t-test) and the effect was on par with that observed for 

well-known tumor suppressor genes listed in the CGC such as FAT1 
(ref. 53) (Fig. 8g). These results collectively suggest LGI3 as a putative 
tumor suppressor gene.

Taken together, our data highlight the effectiveness of FunMap 
in uncovering genes with a low mutation frequency as putative cancer 
genes, presenting them as promising candidates for further experi-
mental validation.

Discussion
Large-scale omics profiling has massively expanded the landscape of 
somatic mutations and cancer-associated proteins but the difficulty 
in functional interpretation hinders their prioritization and transla-
tion into clinical practice. By using machine learning techniques on 
pan-cancer proteogenomics data, FunMap provides a systematic 
framework to tackle this challenge.

With 196,800 associations among 10,525 proteins and an LR of 
50, FunMap provides both a comprehensive and unbiased proteomic 
coverage and a high level of functional relevance. The key differences 
between our approach and previous studies on gene coexpression 
networks include the use of protein profiling data obtained from over 
1,000 human tumor samples spanning 11 cancer types and a supervised 
machine learning approach for functional network construction. Con-
sistent with previous reports, protein coexpression is a much more 
reliable predictor of gene cofunctionality than mRNA coexpression10,12; 
however, combining both protein and mRNA coexpression provides the 
highest level of predictive power. One unexpected observation is that 
our coexpression-based functional network outperforms protein–pro-
tein interaction networks in discriminating between functionally rel-
evant and irrelevant gene pairs. Thus, functional networks constructed 
from proteomic and proteogenomic data offer a complementary 
approach to protein–protein interaction networks, thereby expanding 
systems biology frameworks for functional genomics research. Indeed, 
analyses from our study clearly demonstrate the utilities of FunMap in 
providing a functional annotation of understudied cancer proteins, 
obtaining functional insights into somatic mutations and shedding 
global insights into cancer proteome organization and function.

A limitation of this study is that data from only 11 cancer types 
were included in the pan-cancer FunMap construction. We expect that 
proteomic and proteogenomic profiling will be applied to more cancer 
types in the future and a more comprehensive analysis can be per-
formed as more cancer types are included in future studies. Moreover, 
the CPTAC cohorts used in the study have limited follow-up duration, 
with the incidence of death events varying substantially among differ-
ent cancer types. Therefore, the statistical power to detect associations 
with survival is generally low and varies considerably across cohorts, 
which constrains the scope of our prognostic analysis. To mitigate 
this limitation, it would be beneficial to seek out cancer cohorts that 
have been followed for a longer period. For some cancer types such as 
breast cancer and lung cancer, there are already multiple independent 
proteomic and proteogenomic studies. In this scenario, our approach 
can also be used to integrate independent datasets from a single cancer 
type to build cancer-type-specific FunMaps. Additionally, this study 
focused on assessing the value of proteogenomic profiling data in 
mapping the functional network of human cancer but the approach 
can be easily expanded to integrate expression data with other types 
of data, such as protein–protein interaction data, to generate a more 
comprehensive functional network. Although FunMap GAT outper-
formed other models to some extent in distinguishing between driver 
and passenger mutations, the accuracy was far from satisfactory for 
all models, highlighting the difficulty of this persistent challenge. 
Further improvements may be made in both FunMap construction and 
network-based driver gene prediction. Lastly, the associations identi-
fied in our analysis represent pairs of genes that work in coordination 
within the complex tumor tissue system, which includes not only cancer 
cells but also the surrounding microenvironment. Because the data we 
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used originated from bulk tissues, it is impossible to determine associa-
tions within specific cell types. The emerging single-cell proteomics 
technology would be ideal for addressing this limitation54.

In conclusion, this study highlights the great potential of integrat-
ing machine learning and proteogenomic profiling to gain a deeper 
understanding of complex cancer systems. By generating a compre-
hensive functional network, this approach provides a robust framework 
for cancer functional genomics research, offering valuable insights 
into somatic mutations and cancer-associated proteins. These findings 
can greatly aid in prioritizing targets for clinical translation, ultimately 
contributing to the development of more effective cancer therapies.

Methods
Data acquisition
CPTAC data for ten cancer cohorts were harmonized by the CPTAC 
pan-cancer working group as previously described15. HCC data were 
downloaded from the original publication55. In total, we collected 
mRNA and proteomics data for 11 cancer cohorts, where five cohorts 
also included data for matched normal samples for both mRNA and 
protein. For each of the 32 mRNA or proteomics datasets, we required 
that each gene or protein had at least 20 valid data points to be included 
in the analysis. The union set of all valid genes was denoted as gvalid.

Network construction
A machine learning model using XGBoost56 was trained to predict the 
probability of cofunctionality for a gene pair. For each gene pair (A,B), 
the PCC PCCAB was computed between their mRNA expression vectors 
or protein expression vectors in each of the 32 datasets. We further 
calculated the MR of a gene pair in each dataset using a modified ver-
sion of a previously published definition17, MR(A,B) = 1

n−1√rABrBA, where 
rAB is the rank of PCCAB among all PCCs between gene A and its partners. 
The rank starts at 0 and a larger PCC results in higher ranks. The total 
number of genes is denoted as n. The MR values are in the range of [0,1]. 
In the case of PCCAB missing in a cohort, we treat rAB as a missing value. 
The 32 MRs for a gene pair were used as input features for training the 
XGBoost model.

To prepare the data for training and validating the XGBoost model, 
we downloaded a gold-standard set that was previously constructed 
using the Reactome pathway database12. In brief, functionally associ-
ated protein pairs (labeled as positive) are defined as pairs that are 
found in the same detailed pathway. Here, each protein is annotated 
to a subset of the lowest-level pathways. Only pathways that contain 
≤200 proteins were included to make sure that only closely related 
protein pairs were positively labeled. Protein pairs that are not included 
in the same pathway at any annotation level are labeled negative. We 
included only those pairs where both proteins are in gvalid as the final 
dataset D for training the classification model. We partitioned the data 
into training (Dtrain) and test (Dtest) sets, with a 50–50 split. The ratio of 
positive and negative labels was kept the same in the training and test 
sets using a stratified splitting technique. However, it is worth noting 
that the original dataset exhibited a substantial class imbalance issue, 
with a considerably larger number of instances in the negative class 
compared to the positive class. To tackle this challenge, we applied 
undersampling specifically to the negative class within the training 
dataset. This step involved reducing the number of negative class 
instances, aligning them with the number of positive class instances. 
The goal was to create a balanced training dataset that allowed the 
machine learning model to learn from both classes more equitably. We 
then performed hyperparameter tuning by applying grid search with 
fivefold cross-validation. The parameter grid was defined as follows: 
{‘n_estimators’: [50, 150, 250], ‘max_features’: [0.2, 0.4, 0.6, 0.8], ‘min_
samples_split’: [2, 4, 6]}. We used AUROC as the performance metric 
for hyperparameter tuning. After the model was trained, we predicted 
the labels for all possible pairs of proteins in gvalid. We required that the 
MR of a pair must be larger than 0.95 (that is, top 5% among all gene 

pairs) in at least one data cohort. The final prediction performance was 
measured with LLR using the gold-standard subset Dtest. Here, LLR is 
defined as

LLR = ln (C(PP&P)/C(PP&N)
C(P)/C(N) )

where PP  is the set of predicted positive protein pairs, while P  and N  
are sets of positive and negative pairs in Dtest, respectively. Set intersec-
tion is denoted as &, while function C(⋅) returns the size of a set.  
To determine the number of pairs to be included in the final network, 
we first sorted the pairs in descending order of being positive (accord-
ing to the predicted probability). We then computed the LLRs while 
designating more top pairs with a step size of 100 as PP. The LLR drops 
with the inclusion of less confidently predicted pairs. We stopped the 
process as soon as LLR dropped below 3.912 (LR = 50). All protein pairs 
selected with this procedure were included as edges in a functional 
association network named FunMap.

Detection of network modules
We used two complementary algorithms to identify modules from 
FunMap. First, we applied the ICE algorithm23 to identify relatively 
independent maximal cliques in the network as functional modules. 
Overlap between the modules is allowed but restrained because of the 
inherent design of the algorithm. The stringent requirement imposed 
by the module definition in the algorithm ensures high-level of cofunc-
tionality among all proteins in a module. The input to the software 
(http://ice.zhang-lab.org) is the network edge list file and the only 
required parameter is the minimal module size C. In this study, we set 
C to 5.

In contrast to the bottom-up approach taken in ICE, the top-down 
hierarchical modular organization of FunMap was uncovered using 
the NetSAM algorithm25 implemented in R (https://bioconductor.org/
packages/release/bioc/html/NetSAM.html). The main function of the 
package takes as input an network edge list file and outputs an ‘nsm’ 
file that describes all detected modules organized in a hierarchical 
fashion. The most important parameters to the function include ‘min-
Module’ and ‘modularityThr’. The parameter ‘minModule’ specifies the 
ratio between the size of the smallest module and the total number of 
nodes in the network. If the size of a module identified by the function 
is less than the minimum size, the module is not further partitioned 
into submodules. We set ‘minModule’ such that the minimum size of 
a module was 20. To test whether a network under consideration had 
a nonrandom internal modular organization, we set the parameter 
‘modularityThr’ to 0.2 such that the network would be considered to 
have internal organization and would be further partitioned when its 
modularity57 was above this threshold value. This parameter reflects the 
stringency of splitting a module into submodules. A higher threshold 
value tends to split the modules less frequently.

Connecting hierarchical modules to cancer hallmarks
Overlap between FunMap’s hierarchically organized modules and 
cancer hallmarks was evaluated according to 146 literature-curated 
GO terms26,27,58–60. These terms are categorized into ten themes that 
map to ten cancer hallmarks61. For each FunMap module, we performed 
overrepresentation analysis (ORA) and obtained the top ten enriched 
terms for that module. To annotate each branch of the tree structure 
rooted on a second-level module with the most relevant hallmark, we 
designed a voting scheme that works as follows: for each branch, we 
first designated the most overlapped hallmark as that with the largest 
sum of associated negative logarithm of P values for that hallmark 
over all modules in that branch. In essence, each module can vote for a 
representative hallmark for its residing branch using its level of overlap 
with that hallmark. The designated hallmark for each branch represents 
the consensus annotation for the whole branch. The top associated 

http://www.nature.com/natcancer
http://ice.zhang-lab.org
https://bioconductor.org/packages/release/bioc/html/NetSAM.html
https://bioconductor.org/packages/release/bioc/html/NetSAM.html


Nature Cancer

Analysis https://doi.org/10.1038/s43018-024-00869-z

consensus annotation for the ten largest branches are shown in Fig. 4. 
For selected branches, a second consensus hallmark annotation was 
also shown that was both closely related to the top annotation and had 
a sufficiently significant P value.

Connecting hierarchical modules to ECM and angiogenesis
ECM genes encoding proteins with documented exclusive proangio-
genic or antiangiogenic activity62 along with collagen type VI were first 
used to calculate the proportion of proangiogenic and antiangiogenic 
genes within nodes downstream of the FunMap branch rooted in hier-
archical module L2_M12. A final enrichment ratio for angiogenic impact 
was then computed by taking the previous proangiogenic ratio over 
the antiangiogenic ratio. Values > 1 indicate a higher proportion of 
proangiogenic ECM genes in a module while values < 1 indicate a higher 
proportion of antiangiogenic ECM genes. Some modules did not con-
tain any antiangiogenic genes and were annotated as proangiogenic 
exclusive (Supplementary Table 4).

Connecting network modules to somatic mutations
We trained an XGBoost model to evaluate the importance of gene muta-
tion in predicting network module abundance. A total of 536 modules 
were considered, including those revealed by NetSAM (255) and ICE 
(281). To compute module abundance, we first transformed the raw 
protein expression data in each cohort into z scores by performing 
feature-wise standardization. The module abundance of a sample is 
defined as the average z score of all genes in the module for that sample.

We used mutation data from ten CPTAC tumor cohorts in this part 
of the study because of the lack of mutation data from the HCC study. 
First, we selected genes that were significantly mutated in at least one 
cohort (q value < 0.1). We then retrieved the actual binary mutation 
data of the selected genes from each cohort and merged them into a 
final feature dataset. The resulting mutation dataset was composed of 
1,021 samples and 77 genes.

For each module, we trained a regressor with XGBoost to predict 
module abundance based on the 77 significantly mutated genes. We 
applied fivefold cross-validation for hyperparameter tuning using 
the grid search technique. The parameter grid was defined as {‘learn-
ing_rate’: [0.1, 0.2, 0.3, 0.4, 0.5], ‘n_estimators’: [20, 50], ‘max_depth’: 
[2, 3, 4]}. We used the PCC between the predicted and actual abundance 
scores as the scoring metric for model assessment. Best parameters 
were used to fit a final model with the whole training data. We only 
included those modules that could be predicted with PCC > 0.25 in 
downstream analyses. This resulted in a total of 17 modules. The built-in 
feature importance scores of the trained model were used to estimate 
the contribution of each mutated gene in predicting the module abun-
dance. Specifically, we used the ‘gain’ type importance, which implies 
the relative contribution of the corresponding feature to the model, 
calculated by taking each feature’s contribution for each tree in the 
model. A higher value of this metric when compared to another feature 
implies that it is more important for generating a prediction. This allows 
features to be ranked and compared with each other.

Function prediction of understudied genes
On the basis of the assumption that genes with similar functions are 
located in proximity to each other in the functional association net-
work, we made function prediction of the dark genes in FunMap. We 
used the network topology analysis algorithm in WebGestalt49 to estab-
lish a neighborhood of 50 genes for each dark gene and then performed 
GO enrichment analysis. Specifically, the algorithm lets the random 
walker start from each dark gene. It repeatedly moves to its neighboring 
nodes with an equal likelihood. At each step, it also has some probability 
(P = 0.5) of returning to the starting point. The restart probability con-
trols how far the random walker moves away from the dark gene. The 
final score of a gene is defined as the steady-state probability that the 
walker will stay at the gene in the long run. For each dark gene, we chose 

the top 50 genes with the highest scores as its network neighbors and 
then performed ORA against GO terms for these network neighbors.

Cancer driver gene prediction
To predict cancer driver genes, we trained GAT-based63 neural net-
work models on FunMap and compared the performance with models 
trained with other publicly available networks, including BioPlex18, 
HI-union19, BioGrid20 and STRING21. For the STRING network, we only 
kept interactions with a combined score higher than 700. As a baseline, 
we also trained a random forest classifier without using network data.

We used mutation data from the ten CPTAC tumor cohorts in 
this part of the study. First, we selected genes that were significantly 
mutated in at least one cohort (q value < 0.1). We then performed −log10 
transformation to the raw P values. Each gene was characterized by a 
ten-dimensional vector as its features, representing mutation signifi-
cance in ten cancer cohorts.

Given the uncertainty regarding the role of an unlabeled gene as 
a driver or nondriver gene, the standard supervised machine learning 
approach is not well suited for our task. This is because of the fact that 
typical supervised learning algorithms necessitate the presence of 
both positive and negative examples for training purposes. Therefore, 
we formulated our prediction task as a PU learning problem64 where 
genes in the network are divided into positive genes (known drivers) 
and unlabeled genes, which can contain both hidden driver genes (to 
be predicted positives) and nondriver genes (negatives). The goal is 
to train a model that uses known drivers to identify hidden drivers in 
the network. For known drivers, we downloaded a list of cancer driv-
ers from the original CGC publication52, which included 274 genes. To 
test our trained model, we downloaded the 449 driver genes that were 
included in the CGC database after the original publication (Supple-
mentary Table 7). Only known and hidden driver genes presented in the 
respective networks were used in training and performance evaluation.

We used the bagging based PU learning approach65 to tackle the 
driver gene prediction task. The approach can be broken down into 
four steps: (1) create a training set by combining all positive data points 
with a random bootstrapped sample set B of the same size from the 
unlabeled samples; (2) train a classifier with the newly assembled 
sample set, treating positive and unlabeled data points as positives 
and negatives, respectively; (3) apply the classifier to those unlabeled 
samples that were not included in B, the out-of-bag (OOB) sample set, 
and record their predicted scores; and (4) repeat the previous three 
steps T  times (T = 10 in this study) and assign to each sample the average 
of the OOB scores it has received.

To train a node classifier in step 2 using GNN, we used the GAT 
architecture. The learning of a GAT attention layer involves four key 
steps. First, to obtain sufficient expressive power, a linear transforma-
tion is applied to the feature vectors of the nodes. Second, attention 
coefficients determining the relative importance of neighboring fea-
tures to each other are computed. To obtain the attention score 
between two neighbors, it first concatenates the embeddings z  of the 
two nodes obtained from the previous step, and then takes a dot prod-
uct of it with a learnable weight vector a and finally applies a leaky 
rectified linear unit (LeakyReLU). This step can be formulated as

eij = LeakyReLU(aT(zi||z j))

where || denotes concatenation. Third, to make the scores easily com-
parable, the attention coefficients are normalized across all neighbor-
hoods using the softmax function. The fourth and final step works 
similarly to a graph convolutional network. The embeddings from 
neighbors are aggregated together, weighted by the attention coeffi-
cients and then transformed by a nonlinear activation function. Similar 
to multiple channels in a convolutional neural network, GAT uses mul-
tihead attention to enhance the model capacity and to stabilize the 
learning process. Specifically, K  independent attention mechanisms 
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apply the transformations of steps 1–3. During the last step, embed-
dings from different heads are averaged before applying the nonlinear 
transformation. In this study, we trained a model consisting of two GAT 
layers each with eight attention heads.

For performance evaluation, in addition to the standard metrics 
such as AUROC and AUPRC that treat all unlabeled samples as negative, 
we also included the more appropriate AP@k metric, which is widely 
used in the areas of information retrieval and recommendation systems. 
Essentially we treated our task as a ranking problem where we aimed to 
assign the test positive samples with higher scores (likelihood of being 
a driver gene) such that they ranked higher in the list of sorted prediction 
scores66. After the samples were sorted by their predicted scores, AP@k 
was computed as AP@k = 1

min(m,k)
∑k
i=1

TP(i)
i

, where m is the total number 

of positive samples in the test dataset. TP(i) is set to 0 if the ith sample 
is not a positive test sample. Otherwise, it is set to the number of positive 
test samples seen up to the ith position in the ranked list. AP@k is a 
measure that combines recall and precision for ranked results. It is 
considered a reasonable evaluation metric for emphasizing the return 
of more highly likely positive samples at the top of the ranked list67.

We trained our GAT models using the Pytorch Geometric frame-
work68. The inputs to the model included a feature matrix X ∈ RN×p and 
network edge list (Extended Data Fig. 7). In this study, p was set to 10, 
representing the significance of gene mutation in ten cancer cohorts. 
Cross-entropy loss was computed as L = −(y log(h) + (1 − y) log(1 − h)), 
where h is the output of the network after sigmoidal activation and y 
is the node label (0 or 1). The ADAM optimizer69 was used for training 
with an exponentially decaying learning rate (γ = 0.99) starting at 
0.001. We applied early stopping to prevent overfitting. For the baseline 
random forest model, only the feature matrix was needed. Default 
parameters provided in the scikit-learn package70 were used.

Published causal evidence supporting predicted cancer drivers
Each of the predicted cancer drivers described above was used to 
search PubMed with the following terms on December 20, 2023: ‘gene 
(CRISPR OR KO OR shRNA OR siRNA knockdown OR silencing OR 
overexpression OR over-expression) cancer’, where ‘gene’ was replaced 
by the predicted cancer driver. Search results were sorted in descend-
ing order with respect to published date. Abstracts or manuscript 
texts were then manually vetted for causal evidence that genetic 
and/or pharmacologic perturbation of the predicted cancer driver 
functionally impacted cancer phenotypes (proliferation, migration, 
invasion, etc.) or augmented drug responses in model systems. This 
continued for each gene until all search records were verified or until 
ten publications by recent publication date were found with causal 
evidence impacting cancer phenotypes and/or drug response (Sup-
plementary Table 7).

Genetic dependency in cancer cell lines
Cancer cell line annotations (sample_info.csv) and gene effect depend-
ency scores derived from the integration of CRISPR KO screens pub-
lished by Broad’s Achilles and Sanger’s SCORE projects were retrieved 
from DepMap Public 22Q2 (CRISPR_gene_effect_.csv)71,72. Cancer cell 
lines were matched to tumor cancer types by using the following fil-
ters: BRCA: primary_disease = ‘breast cancer’ and lineage = ‘breast’; 
GBM: primary_disease = ‘brain cancer’ and lineage = ‘central_nerv-
ous_system’; LUAD: primary_disease = ‘lung cancer’, lineage = ‘lung’ and 
lineage_sub_subtype = ‘NSCLC_adenocarcinoma’; PDAC: primary_dis-
ease = ‘pancreatic cancer’ and lineage = ‘pancreas’. For each cancer cell 
lineage, a one-sample, one-tailed t-test was used to identify LGI3 and 
FAT1 associated with significantly higher cell growth following gene KO.

Statistics and reproducibility
All data used for machine learning and gene dependency analysis are 
from publicly available resources15,71,72 with detailed methodologies 

for data collection, blinding, randomization and protection. Sample 
sizes were from the original publications and they were sufficient for all 
statistical tests performed. Nonparametric statistical tests were used 
whenever possible. For parametric tests, normality of data distribu-
tions was assumed, although this was not formally tested. No data were 
excluded from analyses. The experiments were not randomized. The 
investigators were not blinded to allocation during experiments and 
outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Proteomics and RNAseq data for the ten CPTAC cancer types were 
derived from the CPTAC pan-cancer study15 (https://proteomic.data-
commons.cancer.gov/pdc/cptac-pancancer). Proteomics and RNAseq 
data for HCC were downloaded from the original publication55. The 
data tables derived from these resources and used as input for Fun-
Map construction are available from Zenodo (https://doi.org/10.5281/
zenodo.7948943)73. Derived feature data for XGBoost model training 
are available from Zenodo (https://doi.org/10.5281/zenodo.7949374)74. 
XGBoost prediction scores for all gene pairs are available from Zenodo 
(https://doi.org/10.5281/zenodo.10080763)75. The FunMap edge list, 
dense modules and hierarchical modules are available online (https://
funmap.linkedomics.org/). The same website also provides visualiza-
tion tools to explore the gene neighborhoods, dense modules and hier-
archical organization of FunMap. Additionally, the FunMap network 
and modules were integrated into WebGestalt76 for enrichment analy-
sis of user-provided gene lists. Cell line annotations and CRISPR KO 
dependency scores can be retrieved from the DepMap website (https://
www.depmap.org). Other datasets used in the study included the gene 
cofunctionality gold standard derived from the Reactome pathway 
database12, ProHD12, BioPlex18, HuRI19, HI-Union19 and BioGRID20. Source 
data are provided with this paper.

Code availability
The FunMap Python package is fully open source and available for 
download from the Python Package Index (https://pypi.org/project/
funmap). The source code is hosted on GitHub (https://github.com/
bzhanglab/funmap). Other supporting software is available as follows: 
scikit-learn 1.3.2 (https://scikit-learn.org/stable/index.html), ICE 1.0.2 
(http://ice.zhang-lab.org), NetSAM 1.44.0 (https://www.bioconduc-
tor.org/packages/release/bioc/html/NetSAM.html), WebGestaltR 
0.4.6 (https://cran.r-project.org/web/packages/WebGestaltR/index.
html) and pytorch_geometric 1.7.2 (https://github.com/pyg-team/
pytorch_geometric).
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Extended Data Fig. 1 | Quantification of inter-sample heterogeneity through 
gene-wise standard deviation. A) Distributions of gene-wise standard 
deviations across individual datasets (n = 17,733 to 19,113 mRNAs and n = 7,961 
to 11,815 proteins). For boxplots, centerline indicates the median, box limits 

indicate upper and lower quartiles, whiskers indicate the 1.5 interquartile range. 
B) Median values of the median standard deviations across various dataset 
groups. T: Tumor; N: Normal.
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Extended Data Fig. 2 | Breakdown of feature importance in the XGBoost model. A) Barplot showing importance of individual features. B) Pie chart depicting 
aggregated importance by data and sample type pairs.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Characterization of dense modules. A) Heatmap 
depicting log2 fold change (log2FC) of average protein abundance of dense 
modules (cliques) in tumor vs normal for each of the five cancer cohorts shown. 
All 78 cliques have concordant tumor over- or under-expression in all five cohorts 
(FDR < 0.01 in each cohort). Table shows the number and maximum number of 
overlapping edges with other networks as indicated. Gene ontology biological 
processes (GO_BP) indicates the top enriched term of a given clique (GO_BP_
FDR). B-C) Tumor overexpressed, ECM-associated dense modules, Clique 96 
(B) and Clique 54 (C). Edge color indicates lack of overlap in BioGRID, BioPlex, 
HI-union, STRING, and CORUM (pink) or overlap in any of these resources (gray). 
D-E) Boxplots comparing average protein abundance of Clique 96 (D) and Clique 

54 (E) in tumor and normal samples demonstrating tumor overexpression in 
five cancer cohorts. Number of samples, n, are indicated in parenthesis. P-values 
determined by two-sided Wilcoxon rank-sum test. F-G) Kaplan-Meier plots 
depicting overall survival (OS) difference in patients from indicated cohorts 
stratified by median value of the average abundance of proteins in Clique 96 
(F) and Clique 54 (G). Logrank p-values and hazard ratio (HR) shown with 95% 
confidence intervals derived from Cox-proportional hazard models. Significance 
is indicated as ****p < 0.0001. For boxplots, centerline indicates the median, box 
limits indicate upper and lower quartiles, whiskers indicate the 1.5 interquartile 
range, and number of samples per group indicated in parentheses.
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Extended Data Fig. 4 | Connecting somatic mutations to functional protein 
modules. A) Average pairwise Pearson’s correlation coefficient for genes in 
L2_M40 based on mRNA or protein data in different cancer types. B) Average 
pairwise Pearson’s correlation coefficient for genes in L3_M58 based on mRNA or 
protein data in different cancer types. C) Comparison of TP53 protein abundance 
(log2 MS1 intensity) in TP53 wildtype (wt) and mutant (mut) samples across 10 

cancer types. Number of samples, n, are indicated in parenthesis. P-values were 
derived from two-sided Wilcoxon rank-sum test. Significance is indicated as 
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns: not significant. For boxplots, 
centerline indicates the median, box limits indicate upper and lower quartiles, 
whiskers indicate the 1.5 interquartile range, and number of samples per group 
indicated in parentheses.
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Extended Data Fig. 5 | Illuminating understudied cancer proteins RBM34 and 
RBM12B. A) Boxplots comparing protein abundance of RBM34 and RBM12B in 
tumor and normal samples demonstrating tumor over-expression in five cancer 
cohorts. Number of samples, n, are indicated in parenthesis. P-values determined 
by two-sided Wilcoxon rank-sum test. For boxplots, centerline indicates the 
median, box limits indicate upper and lower quartiles, whiskers indicate the 1.5 

interquartile range, and number of samples per group indicated in parentheses. 
B) Barplots depicting frequency of somatic copy number and mutations in 
RBM34 and RBM12B from TCGA PanCancer Atlas Studies in cBioPortal. C-D) 
Network neighborhood of RBM34 (C) or RBM12B (D) with genes associated with 
the enriched GO terms highlighted.
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Extended Data Fig. 6 | Illuminating understudied cancer proteins CXorf38 
and MAB21L4. A) Boxplots comparing protein abundance of CXorf38 in 
tumor and normal samples demonstrating tumor over-expression in five 
cancer cohorts. Number of samples, n, are indicated in parenthesis. P-values 
determined by two-sided Wilcoxon rank-sum test. B) Relationship between 
protein abundance of CXorf38 and RNA-seq inferred ESTIMATE ImmunoScore 
in eight cancer types. P-values were derived from two-sided Spearman’s rank 
correlation. Shaded area depicts the 95% confidence interval. C) Single cell data 
from the Human Protein Atlas showing that CXorf38 is expressed across all cell 

types, but the highest expression occurs in immune cells. D) Boxplots comparing 
protein abundance of MAB21L4 in tumor and normal samples in five cancer 
cohorts. Number of samples, n, are indicated in parenthesis. P-values determined 
by two-sided Wilcoxon rank-sum test. Significance is indicated as *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001, ns: not significant. For boxplots, centerline 
indicates the median, box limits indicate upper and lower quartiles, whiskers 
indicate the 1.5 interquartile range, and number of samples per group indicated 
in parentheses.
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Extended Data Fig. 7 | Graph neural network architecture for predicting 
cancer driver genes based on network topology and mutation data. The 
model takes as input mutation data for genes represented in a feature matrix. 
Nodes in the graph correspond to genes, where pink nodes are known positive 
driver genes, orange nodes are hidden positive genes, and gray nodes are 

unlabeled genes. Both the node features and network topology are processed 
through hidden layers with ReLU activations. The output layer predicts gene 
classifications, with red nodes indicating predicted positive driver genes and 
blue nodes indicating predicted negative genes.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis The FunMap Python package is fully open source and available for download from the Python Package Index (PyPI) at https://pypi.org/
project/funmap. The source code is hosted on GitHub at: https://github.com/bzhanglab/funmap. Other supporting software is available as 
follows: scikit-learn 1.3.2 (https://scikit-learn.org/stable/index.html),  ICE 1.0.2 (http://ice.zhang-lab.org), NetSAM 1.44.0 (https://
www.bioconductor.org/packages/release/bioc/html/NetSAM.html), WebGestaltR 0.4.6 (https://cran.r-project.org/web/packages/
WebGestaltR/index.html). pytorch_geometric 1.7.2 (https://github.com/pyg-team/pytorch_geometric).
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Proteomics and RNASeq data for the 10 CPTAC cancer types were derived from the CPTAC pan-cancer study15: https://proteomic.datacommons.cancer.gov/pdc/
cptac-pancancer.  Proteomics and RNASeq data for HCC were downloaded from the original publication55. The data tables derived from these resources and used 
as input for FunMap construction are available at https://zenodo.org/record/7948944. Derived feature data for XGBoost model training are available at https://
zenodo.org/records/7949375. XGBoost prediction scores for all gene pairs are available at https://zenodo.org/records/10080764. FunMap edge list, dense modules, 
and hierarchical modules can be downloaded at: https://funmap.linkedomics.org/. FunMap edge list, dense modules, and hierarchical modules can be downloaded 
at: https://funmap.linkedomics.org/. The same web site also provides visualization tools to explore gene neighborhoods, dense modules, and hierarchical 
organization of FunMap. Additionally, FunMap network and modules have been integrated into WebGestalt73 for enrichment analysis of user provided gene lists. 
Cell line annotations and CRISPR KO dependency scores can be retrieved from the DepMap website: https://www.depmap.org. Other datasets used in the study 
included gene co-functionality “gold standard” derived from the Reactome pathway database12, ProHD12, BioPlex18, HuRI19, HI-Union19, and BioGRID20.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Publicly available data were used, and sex and gender were not considered in the analysis

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Publicly available data were used, and race, ethnicity, or other socially relevant groupings were not considered in the analysis

Population characteristics The datasets were not selected and analyzed based on specific population characteristics beyond availability of public 
datasets.

Recruitment The datasets were not selected and analyzed based on specific population characteristics beyond availability of public 
datasets.

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No new data generation. Sample sizes were from the original publications, and they were sufficient for all statistical testes performed. 

Data exclusions None.

Replication No new data generation, this study reanalyzes previously published data.

Randomization Randomization is not applicable because there was no new experiments.

Blinding Blinding is not applicable because there was no new experiments.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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